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Interest has surged recently in removing siblings from

population genetic data sets before conducting down-

stream analyses. However, even if the pedigree is

inferred correctly, this has the potential to do more

harm than good. We used computer simulations and

empirical samples of coho salmon to evaluate strategies

for adjusting samples to account for family structure.

We compared performance in full samples and sibling-

reduced samples of estimators of allele frequency (P̂),

population differentiation (F̂ST) and effective population

size (N̂e). Results: (i) unless simulated samples included

large family groups together with a component of unre-

lated individuals, removing siblings generally reduced

precision of P̂ and F̂ST; (ii) N̂e based on the linkage

disequilibrium method was largely unbiased using full

random samples but became increasingly upwardly

biased under aggressive purging of siblings. Under

nonrandom sampling (some families over-represented),

N̂e using full samples was downwardly biased; remov-

ing just the right ‘Goldilocks’ fraction of siblings could

produce an unbiased estimate, but this sweet spot var-

ied widely among scenarios; (iii) weighting individuals

based on the inferred pedigree (to produce a best lin-

ear unbiased estimator, BLUE) maximized precision of

P̂ when the inferred pedigree was correct but per-

formed poorly when the pedigree was wrong; (iv) a

variant of sibling removal that leaves intact small sib-

ling groups appears to be more robust to errors in

inferences about family structure. Our results illustrate

the complex challenges posed by presence of family

structure, suggest that no single optimal solution exists

and argue for caution in adjusting population genetic

data sets for the presence of putative siblings without

fully understanding the consequences.
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Introduction

Random sampling is a convenient theoretical and statistical

construct. It is easy to implement in computer simulations

but difficult or impossible to achieve in the real world. A

truly random sample has two important features: equal

opportunity—every individual in the focal population must

have the same probability of appearing in the sample; and

independence—the probability that an individual will be

sampled does not depend on whether any other individu-

als are in the sample. A violation of the second criterion

occurs when relatives are likely to be sampled together.

Recent attention related to nonrandom sampling has

focused on three key points:

1 Nonrandom samples, with some families being over-

represented compared to their occurrence in the popula-

tion, are common in natural populations, particularly for

species with relatively high fecundity that are sampled

at early life stages (Hansen et al. 1997; Goldberg & Waits

2010; Whiteley et al. 2012);

2 Presence of family structure in samples can affect some

population genetic analyses (Anderson & Dunham 2008;

Rodr�ıguez-Ramilo & Wang 2012);

3 Recent advances in DNA technology and analytical

methodology have improved the ability to identify rela-

tives in natural populations (Ashley et al. 2009; Jones &

Wang 2010; Almudevar & Anderson 2012).

Based on these three observations, many researchers (e.g.

Hess et al. 2015) now routinely remove all but one member

of a putative sibling group before using population genetic

data in downstream analyses—an approach that is now is

often regarded as ‘best practices’ (Peterman et al. 2016). At

first glance, the premises seem sound and the conclusion

seems logical—what could go wrong?

Actually, a lot can go wrong. At least three major prob-

lems can arise when one attempts to purge putative sib-

lings from samples. (i) Siblings occur naturally in all

populations at frequencies that are inversely related to

effective population size (Ne)—and this fact forms the basis

of the sibship method for estimating Ne (Wang 2009). Indis-

criminant removal of putative siblings thus risks erasing

part of the evolutionary signal of small populations, mak-

ing them look more like large or infinitely large ones. (ii)

Even if sibling removal is effective in reducing the appear-

ance of nonrandom sampling, it also reduces the sample
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size, which sets up an inevitable trade-off with respect to

precision and statistical power that should be formally con-

sidered. (iii) Methods for sibling inference are not infallible,

particularly for identification of half-siblings (HS) or other

more distant relatives. Results of sibship reconstruction

often differ depending on the method used (Ringler et al.

2015) and, for a given method, can differ depending on the

type of markers used (Linløkken et al. 2016). Therefore,

researchers interested in pursuing removal of putative sib-

lings should consider the consequences of imperfect ability

to identify relatives.

As far as we can determine, the only analyses for which

sibling removal has been convincingly demonstrated to

improve performance are Bayesian clustering methods

such as STRUCTURE (Pritchard et al. 2000), for which family

groups can be mistaken for separate ‘populations’

(Anderson & Dunham 2008; Rodr�ıguez-Ramilo & Wang

2012). Whether this reflects a shortcoming of the method

itself or rather a problem of interpretation is an open ques-

tion. Rodr�ıguez-Ramilo et al. (2014) found that some other

clustering methods that do not make assumptions about

Hardy–Weinberg equilibrium and linkage equilibrium

were much less sensitive to family groups than STRUCTURE.

This suggests that the effects of siblings are case-specific

and depend on the particular analyses involved.

Because related individuals in a sample create a mis-

match between the variance of estimated allele (or geno-

type or gamete) frequencies and the variance predicted

under the assumption of random, independent sampling, it

is clear that presence of siblings can bias results of statisti-

cal tests that compare the observed deviations in statistics

(like allele frequencies) with their expectations under ran-

dom sampling theory. Accordingly, researchers should

remain vigilant about effects of siblings on statistical

hypothesis tests. However, this does not necessarily mean

that eliminating putative siblings from samples is a sound

strategy in general. For example, although sibling removal

has been advocated to improve point estimates of allele

frequency (Goldberg and Waits 2010), it can actually

reduce performance of the estimator. This potential down-

side to sibling removal indicates that it is risky to routinely

remove putative siblings from genetic data sets without a

clear understanding of the consequences.

Here, we use computer simulations to evaluate the prac-

tical consequences of removing siblings from both random

and nonrandom samples, generated under several mating

models. We focus on two single-locus metrics (allele fre-

quency and FST) and one-two-locus metric [linkage disequi-

librium (LD) between pairs of loci, which is often used to

estimate Ne]. Removing putative siblings before estimating

Ne is less common than for other downstream analyses,

but it does occur (e.g. Peterman et al. 2016). Results indi-

cate that even if family relationships are known without

error, removing siblings can degrade precision of estimates

of allele frequency and FST and bias estimates of Ne. The

results argue for caution by researchers who are tempted

to try purging siblings from samples from real

populations.

To better understand these simulation results, we next

undertake an analytical treatment of the effect of sibling

removal on allele frequency estimation. We consider sib-

ling removal as a special (extreme) case of unequal

weighting of the information from each individual in a

sample. Use of such weighting schemes to obtain the best

linear unbiased estimator (BLUE) for a parameter is well

known in statistics, and we review McPeek et al. (2004)’s

application of the BLUE approach for estimating allele

frequency in the presence of related individuals. Using

the same mathematical machinery, we obtain an algo-

rithm to find the optimal sibling removal scheme. Finally,

we assess performance of the BLUE approach and several

strategies for sibling removal using multiple collections

of highly related, juvenile coho salmon (Oncorhynchus

kisutch). Our results indicate that, if the true family rela-

tionships are known without error, the BLUE approach

produces an estimate with lower variance than is

obtained either by any variation of sibling removal or

use of the full (unweighted) sample; however, using the

full sample is better than BLUE when sibling identifica-

tion is not reliable. A method of partial sibling removal

that leaves intact family groups no larger than two per-

formed nearly as well as the na€ıve estimator when

inferred pedigrees were unreliable and generally better

than the na€ıve estimator when the inferred pedigree was

correct.

Materials and methods

Computer simulations

Reproduction and sampling. The simulations had the fol-

lowing features. Modelled populations were closed to

immigration and emigration, had discrete generations, a

constant number (N) of mature individuals and separate

sexes with an equal number (N/2) of males and females.

Selfing was not allowed. After initialization, each popula-

tion was allowed to reproduce for 10 generations, follow-

ing which a sample of S individuals for genetic analysis

was produced by the N parents in generation 10 (Table 1).

Genotypes at 100 diallelic (SNP) loci were tracked in each

individual. For each parameter set, 100 replicate samples of

S offspring were generated as described in more detail in

Supporting information.

Three mating systems were considered (Table 1). In the

monogamy and random models, reproduction in genera-

tions 1–10 was by Wright–Fisher ideal populations with

and without monogamy, respectively (so Ne � N). In the

final generation, samples of S progeny were produced in

two ways: (i) using the same two ideal mating systems

(random samples), with the only difference being that S

could be larger than N; or (ii) by allowing some pairs of

parents to produce large families (to mimic nonrandom,

family-correlated samples). In the latter case, the effective

number of parents that produced the sample (Nb) was less

than Ne. In the third (mixed) model of reproduction, in
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generations 1–10, some pairs of parents were allowed to

produce >1 offspring per mating episode, so variance in

reproductive success was greater than random, leading to

Ne < N each generation. Only random samples were taken

in the final generation for the mixed model, but these also

were drawn from parents for which Ne < N. Full details of

these mating models and sampling of juvenile offspring

can be found in Supporting information.

Sibling removal. In addition to considering the full samples,

we evaluated subsets of the samples from which some or all

siblings were removed. Removal was based on the recorded

pedigree and did not consider potential errors in sibling

identification. In fractional removals, individuals from the

full sample were evaluated one at a time to determine

whether they should be included in the reduced sample. If

the individual was a relative of any other individual already

in the reduced sample, it was excluded with probability b.
Values evaluated were b = 0.25, 0.5, 0.75, 0.9, 0.95 and 1.

With b = 1, all but one member of each family was excluded;

we refer to this as 100% sibling removal. In the random and

mixed mating models, sibship exclusion was considered two

ways: excluding all siblings or only full-siblings (FS).

All simulations and data analyses were conducted in R

3.2.3 (RCT 2015). The 25 different scenarios that were simu-

lated are summarized in Table 2.

Sibling production

The random mating and mixed models produced three

classes of offspring based on their one-generation pedigree:

FS, HS and unrelated (U). Only FS and U offspring were

produced in the monogamy model. The proportions of sib-

lings produced are expected to be simple functions of Ne

and the mating model. This relationship, based on a sim-

plification of eqn 10 in Wang (2009) that ignores the (gener-

ally small) correction for departures from Hardy–Weinberg

equilibrium, is as follows:

1

Ne
¼ QHS þ 2QFS

4
; ðeqn 1Þ

where QHS is the fraction of pairs that are HS (maternal

and paternal HS combined) and QFS is the fraction that

are FS. It can be shown (Ackerman et al. 2017) that

eqn 1 yields the same estimate of Ne as the parentage-

analysis-without-parents approach of Waples & Waples

(2011), which calculates inbreeding Ne based on the vec-

tor of numbers of offspring produced by each parent.

Simple rearrangement of eqn 1 produces the expected

frequencies of sibships:

QHS þ 2QFS ¼ 4

Ne
: ðeqn 2Þ

Observed fractions of siblings produced in the simula-

tions were tracked and compared with the expected frac-

tions based on eqn 2, and realized Ne was calculated from

the pedigree using the following equation from Waples &

Waples (2011):

Ne ¼ 2S� 1
Rðk2

i
Þ

2S � 1
; ðeqn 3Þ

where S is the number of individuals in the sample and

ki is the number of sampled offspring produced by the

ith parent. Realized effective size was calculated sepa-

rately for each sex (NeM, NeF), and the overall Ne was

calculated as Ne = 4NeMNeF/(NeM + NeF) (Wright 1938).

Data analysis

Analyses of simulated data focused on three metrics.

Allele frequency. For each locus, true allele frequency

(TrueP) was calculated as the mean frequency in the N par-

ents from generation 10. For each replicate sample of off-

spring, estimated allele frequency (P̂) for each locus was

Table 1 Summary of the processes of reproduction and sampling in the three simulation models. In all models, the population was

allowed to reproduce at constant size N for 10 generations, and then samples were produced by the parents in generation 10

Model Reproduction in generations 1–10 Sampling*

Random Wright–Fisher without selfing F1, F3, F9

Constant N; Ne = N + 0.5 + 1/2N

Monogamy Wright–Fisher with monogamy F1, F3, F9

Constant N; Ne = N + 0.5 + 1/2N

Mixed Overdispersed variance in reproductive success Random; same scheme as for reproduction†

Maximum family size/reproductive event = 9 or 30

Constant N; Ne < N

*F1, F3, F9 are maximum family sizes for each pair of randomly chosen parents. F1 produces a random sample. For F3 and F9, family

size at each reproductive event is drawn from an even distribution 2–3 or 2–9, respectively, and this produces samples with excesses

of siblings.
†In the mixed model, samples were randomly produced by the same process used for reproduction in generations 1–10, with the

exception that sample size could exceed N.
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calculated as the mean across all individuals in the sample.

For each locus, the root-mean-squared-error (RMSE) of

allele frequency was calculated as

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðP̂� TruePÞ2=100

q
;

with the summation taken across all 100 replicate sam-

ples. An overall RMSE was then calculated as the mean

RMSEP across all 100 loci. The consequences of sibling

removal for allele frequency estimation were quantified

as the relative RMSEP (/P), which is the ratio of RMSEP

for the subsample and the full sample. Values of / < 1

indicate that sibling removal increased precision of P̂,

while values >1 indicate that sibling removal degraded

performance.
We can also define an effective sample size in a manner

analogous to the definition of effective population size.

Let an ‘ideal’ sample be one in which individuals are

drawn randomly and every individual provides com-

pletely independent information. For estimation of

parental allele frequency using offspring, an ideal sample

would be one containing S unrelated individuals, in

which case the variance of P̂ is just the binomial sampling

variance:

VarðP̂Þ ¼ EðTrueP� P̂Þ2 ¼ TruePð1� TruePÞ=ð2SÞ: ðeqn 4Þ

In this ideal sample, the effective sample size is the same

as the sample size (ESSideal = S). For a nonideal sample,

ESS is defined as the size of an ideal sample that would be

expected to produce the observed value of VarðP̂Þ. Substi-
tuting mean-squared-error MSEP for EðTrueP� P̂Þ2 and

rearrangement of the above produces

ESS ¼ TruePð1� TruePÞ=½2MSEP�: ðeqn 5Þ

Equation 5 was used to calculate effective sample sizes

for the original samples (ESSfull) and the sibling-reduced

samples (ESSreduced). ESS was calculated for each locus,

and the harmonic mean across all 100 loci was used as the

overall ESS.

Table 2 Scenarios considered in the simulations

Scenario N Ne S Mating Sampling Sibling removal*

A 20 20.5 100 Monogamy Random FS

B 20 20.5 100 Monogamy F9† FS

C 40 40.5 40 Monogamy Random FS

D 40 40.5 40 Monogamy F9 FS

E 40 40.5 100 Monogamy F9 FS

F 40 40.5 100 Monogamy F3‡ FS

G 40 40.5 100 Monogamy Random FS

H 100 100.5 50 Monogamy Random FS

I 250 250.5 50 Monogamy Random FS

J 500 500.5 40 Monogamy Random FS

K 500 500.5 40 Monogamy F9 FS

L 500 500.5 100 Monogamy Random FS

M 40 21.0§ 100 MixedF9¶ Random** FS + HS

N 40 21.3§ 100 MixedF9¶ Random** FS

O 100 15.3§ 40 MixedF9¶ Random** FS + HS

P 100 15.7§ 40 MixedF9¶ Random** FS

Q 500 16.5§ 40 MixedF9¶ Random** FS

R 500 8.2§ 40 MixedF30†† Random** FS + HS

S 40 40.5 100 Random Random FS + HS

T 40 40.5 100 Random Random FS

U 40 40.5 100 Random F9 FS + HS

V 40 40.5 100 Random F9 FS

W 100 100.5 40 Random F9 FS + HS

X 100 100.5 40 Random F9 FS

Y 500 500.5 40 Random Random FS

FS, full-siblings; HS, half-siblings.

*No HS are produced with monogamy.
†

Maximum family size = 9 siblings.
‡

Maximum family size = 3 siblings.
§

Ne < N in the mixed mating model because larger families were produced than with random mating.
¶

Parameters: a (probability of each pair producing >1 offspring) = 0.5; maximum family size = 9 siblings.

**Sampling was random but the mixed mating model produced large families.
††

Parameters: a = 0.1; maximum family size = 30 siblings.
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Population differentiation. For each parameter set, the 100

replicate daughter populations were divided into 50 pairs,

and Nei’s (1973) FST was calculated for each locus as

FST ¼ HT �HS

HT
;

where HS is the average expected heterozygosity within

the two populations and HT is the total expected

heterozygosity based on mean allele frequencies across

the populations. For each pair of populations, an overall

mean FST (�FST) was calculated across all 100 loci using

data for all N parents, and this was considered the

parametric (true) FST. Unbiased estimates of FST (F̂ST)

from samples of progeny were adjusted for sampling

error by subtracting the quantity 1/(2S) (Wright 1978;

Chakraborty & Leimar 1987). Loci monomorphic in

both samples were excluded. Across the 50 pairs of

populations, and for each sibling-reduced sample size,

RMSE of FST was calculated as

RMSEFST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð�FST � F̂STÞ2=50

q
;

and the relative RMSE of FST (/FST
) was calculated anal-

ogously to /P described above.

Effective population size. True effective size under the

monogamy and random mating models was

Ne = N + 0.5 + 1/(2N) (Balloux 2004); these values are

shown in Table 2, but for simplicity in the text only the

whole number is used. In the mixed mating model, the

possibility that a parental pair would be allowed to pro-

duce multiple offspring at each draw led to overdispersed

variance in reproductive success and Ne < N. Realized Ne

in the mixed model was calculated using eqn 3, which was

also used to track the realized effective number of parents

that produced the sibling-reduced samples for all mating

models.

For each sample, Ne was estimated using the LD method

(Waples & Do 2008), and an overall harmonic mean N̂e

was calculated across all replicates. Alleles with frequen-

cies <0.05 were excluded. In addition, RMSE of 1/N̂e (as

recommended by Wang 2009) was calculated as described

above for P̂, and results were used to calculate a relative

RMSE (/Ne
) of estimates of effective size.

Analytical calculation of effective sample size in empirical

samples

Estimating allele frequency by removing siblings can be

thought of as giving a weight of ‘1’ to all unrelated indi-

viduals in the sample and a weight of ‘0’ to all but one sib-

ling from each family. A more general approach would

allow noninteger weights for each individual, based on

information about their degree of relatedness to others in

the sample. McPeek et al. (2004) used this approach to

derive a best linear unbiased estimator (BLUE) for allele

frequencies when the sample consists of individuals of

known relationship. Some programs for parentage analysis

(e.g. Colony; Wang & Santure 2009) also use the inferred

pedigree to update estimates of allele frequency. We use

the same mathematical analysis framework to compute the

effective sample size of any weighted or sibling-removed

sample, conditional on the pedigree connecting the sample

members. To allow comparison of weighted and sibling

removal methods for estimating allele frequency, we also

developed a greedy algorithm to identify the optimal sib-

ling elimination scheme, given the known family relation-

ships among individuals in the sample (See Supporting

information for details).

We evaluated performance of the estimators using 70 col-

lections of juvenile coho salmon taken from streams in Cali-

fornia and Southern Oregon (described in Gilbert-Horvath

et al. 2016). Each collection, which varied in size from 10 to

150 individuals (mean = 59), was genotyped at 95 SNPs and

analysed with Colony (Version 2, Wang 2004; Wang &

Santure 2009) to infer FS and HS. We then used the inferred

pedigree to compute the effective sample size under five dif-

ferent weighting schemes: (i) na€ıve: full sample with no

weighting; (ii) BLUE: weighting according to the best unbi-

ased linear estimator; (iii) optimal-z: the minimum variance

sibling removal scheme found using our greedy algorithm;

(iv) Yank-1: HS were ignored, and individuals were reduced

randomly from full-sibships of size ≥ 3 until only one mem-

ber of the family remained; (v) Yank-2: identical to Yank-1

except individuals were reduced randomly from FS groups

of size ≥ 3 until only two members of the family remained.

The Yank-1 scheme was used in Garza et al. (2014) and Gil-

bert-Horvath et al. (2016) for investigations into juvenile steel-

head (anadromous Oncorhynchus mykiss) and coho salmon.

In the empirical evaluations under the ‘Sample Related’

scenario, we assumed that the inferred pedigree was cor-

rect and used it to compute the effective sample size for all

five methods. To evaluate consequences of errors in sibling

reconstruction, in the ‘Sample Unrelated’ scenario the gene

copies carried by each member of each collection were per-

muted within loci (holding missing data positions con-

stant), yielding for each collection a permuted sample in

which there was no longer any relationship among the

sample members. These permuted samples were analysed

with Colony 2, weighting schemes were calculated using

the Colony-inferred pedigree, and effective sample sizes

for all schemes were calculated using the fact that all

scrambled sample members are effectively unrelated. This

provides an indication of the performance of sibling elimi-

nation under pedigree reconstruction errors.

Results

Results are summarized in Figs 1–8 and S1–S6; see Tables

S1 and S2 (Supporting information) for more details.

Sibling frequency and family size

Observed frequency of siblings in the samples agreed clo-

sely with those expected from eqn 2 (Fig. S1, Supporting
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information). Although expected overall frequencies of sib-

lings depend only on realized Ne, the mix of FS and HS

depends on the mating system and the type of samples.

Furthermore, the distribution of family sizes in the sample

depends strongly on the sample size. Both random and

family-correlated samples showed a strong, positive rela-

tionship between maximum family size and the ratio S/Ne

(Fig. 1). For the same S/Ne, random samples had consis-

tently smaller maximum family sizes. However, a random

sample for a scenario in which sample size is large com-

pared to effective size can have larger family sizes than are

found in some nonrandom samples. Frequencies of FS and

HS in the complete samples for the three mating models

are shown in Fig. S2 (Supporting information).

Reduced sample sizes

Complete sibling exclusion reduced the final sample size by

up to 90% or more when S was larger than Ne and all sib-

lings were excluded (e.g. scenarios B and M; Fig. 2). At the

other extreme, in some scenarios with very small S/Ne and/

or exclusion only of FS (e.g. Scenario X; Fig. 2), the final sam-

ple sizes were reduced by <10%. Partial removal of siblings

had predictably intermediate consequences for sample size.

Allele frequency

Removing siblings from random samples of progeny gener-

ally reduced precision, such that RMSEP was higher after

sibling removal than it was for the full data set (Fig. 3,

top). This effect was nonlinear, with RMSEP rising faster

for high levels of sibling removal. With 100% sibling

removal, RMSEP could be over twice as large as for the

unpurged data set. In some scenarios, RMSEP increased

only very slightly with removal of siblings. This occurred

when few siblings were produced in the first place (Sce-

nario J) or most siblings were HS but only FS were

removed (Scenario T) (Table 2), but also in some mixed

mating scenarios (e.g. Scenario N, Fig. 3) where sampling

was random but many siblings were produced. In one

extreme scenario using the mixed mating model (Scenario

R), where 10% of the randomly chosen pairs of parents

were allowed to produce up to 30 FS, RMSEP of P̂ dropped

by 30% with removal of all siblings (Fig. 3, top).

Surprisingly, very similar patterns were found in most

scenarios with nonrandom samples: removing siblings

increased RMSEP (by up to ~50%) and reduced precision

compared to the full samples (Fig. 4, top). In one case (Sce-

nario V, random mating with family-correlated sampling

that primarily produced HS), removing 100% of the FS

actually reduced RMSEP by 3%.

In every scenario considered, regardless whether sam-

pling was random or not, the ratio of effective size of the

reduced sample (ESSreduced) to the sibling-reduced sample

size (S*) increased with more aggressive purging of

siblings (Fig. 5, top). A positive relationship between

ESSreduced/S* and the fraction of siblings removed indi-

cates that removing siblings did not increase the variance

in P̂ as much as would be expected if all the individuals

removed provided completely independent information

about allele frequency. However, with the exception of Sce-

nario R, the ratio ESSreduced/ESSfull was <1, indicating that

effective sample size after sibling removal was less than

the original sample size (Fig. 5, bottom).

Population differentiation

Results for estimation of FST largely paralleled those for

estimation of allele frequency: in most scenarios with both

Fig. 1 Relationship between mean maximum family size in the

full sample and the ratio of sample size to effective population

size (S/Ne). Results are for simulated data using three different

mating models and random and nonrandom samples. Only ran-

dom sampling was used with the mixed mating model. Sample

size was allowed to be larger than Ne, as often occurs in sam-

pling early life stages of species with high fecundity. High ratios

of S/Ne can produce large family sizes even in random samples.

Fig. 2 Reduced sample size after sibling removal (S*) as a frac-

tion of the full sample size (S) in simulated samples produced

under three mating models. Letters in parentheses indicate

specific scenarios described in Table 2. In some scenarios,

aggressive purging of siblings reduces sample size to a small

fraction of the original.
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random and nonrandom samples, removing siblings

increased RMSEFST (Figs 3 and 4, bottom). Two differences

in results for P̂ and F̂ST are worth noting, however. First,

the effects were magnified for FST: purging all siblings led

to almost a 10-fold increase in RMSEFST for some scenarios

with both random and nonrandom sampling. Second, in

some scenarios using the mixed or monogamy mating

models, RMSEFST was reduced when intermediate levels of

siblings were removed. The best result occurred for

Scenario R noted above, where RMSEFST was reduced by

55–60% when 50–75% of siblings were removed Fig. 4, bot-

tom). However, in this scenario, precision of F̂ST declined

compared to that of the full sample if all siblings were

removed.

Effective population size

Harmonic mean N̂e calculated using eqn 3 closely tracked

theoretical true Ne in scenarios with random sampling and

random mating or monogamy (Fig. S3, Supporting infor-

mation). In the scenarios with nonrandom sampling and in

the mixed mating model (where sampling was random but

mating was not), eqn 3 estimated realized Ne based on the

pedigree for the samples, and N̂e from LDNe closely

tracked the realized Ne (Fig. S4, Supporting information).

When sibling removal was less than about 80%, N̂e from

LDNe was generally a few per cent higher than realized Ne

from eqn 3. This reflects a slight upward bias in the LDNe

version of the LD method, which has been documented

elsewhere (e.g. Waples & Do 2010). With 100% sibling

removal, the point estimate from eqn 3 is infinity (see

eqn 2). Because sibling removal was probabilistic, on occa-

sion all siblings were removed from samples by chance

when the probability of removal was high but <1. Infinite
estimates (recorded here as 99 999 for each sex) increased

harmonic mean realized Ne, such that it generally exceeded

that from LDNe under very aggressive purging of siblings

(Fig. S4, Supporting information).

Removing siblings had the expected effect of increasing

N̂e because truncating largest family sizes reduced dispari-

ties in reproductive success among parents. With random

sampling, N̂e from LDNe was essentially unbiased using

the full sample but became increasingly upwardly biased

Fig. 3 Relative RMSE (h) of allele frequency and genetic differ-

entiation as a function of the percentage of siblings removed

from samples simulated under three mating models. Top: hP.
Bottom: hFST (note the log scale for y-axis). Values of h > 1 indi-

cate that sibling removal reduced precision.

Fig. 4 As in Fig. 3, but for nonrandom samples. Note the log

scale for y-axis in the bottom panel. Even when sampling is

not random and includes excess family structure, purging of

siblings often reduces precision for estimating allele frequency

and population differentiation.
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as a larger fraction of siblings was removed (Fig. 6, top).

For example, Scenario J (with a large Ne = 500 and a small

S = 40) did not produce many siblings, but removing the

few siblings that did occur by chance produced an estimate

that was over six times true Ne.

When sampling was nonrandom, estimates of Ne based

on full samples were all downwardly biased, and N̂e

increased with more aggressive purging of siblings (Fig. 6,

bottom). With nonrandom sampling, a transition from

underestimation to overestimation of Ne occurs somewhere

along the continuum of fractional sibling removal. This

means that (in theory at least) an unbiased estimate could

be obtained from nonrandom samples by removing exactly

the right fraction of siblings. This ‘sweet spot’, however,

varied widely among scenarios. In Scenario F, where the

sample was only moderately nonrandom, removal of half

of the siblings produced an unbiased N̂e (Fig. 6, bottom).

But for scenarios U, E, W and K, N̂e did not become unbi-

ased until about 80%, 90%, 95% and >95% of siblings were

removed, respectively.

Removing siblings from random samples always sharply

increased relative RMSENe
, except in scenarios where there

were few siblings to remove (Fig. S5, top, Supporting infor-

mation). With nonrandom samples, removing siblings gen-

erally lowered RMSENe
until sibling removal exceeded the

sweet spot where the estimates of Ne became largely unbi-

ased, after which RMSENe
rose again, in some cases shar-

ply (Fig. S5, bottom, Supporting information).

Empirical example comparing methods for estimating allele

frequency

Under the assumption that the inferred pedigree was cor-

rect (‘Sample Related’ scenario), application of the BLUE

maximized ESS for each of the 70 collections of juvenile

coho salmon (Fig. 7, top; Supporting information). The

optimal-z sibling removal strategy never decreased ESS

and, in some collections, substantially increased effective

sample size. ESS for the Yank-1 strategy was sometimes

smaller than, but more often larger than, effective sample

Fig. 5 Top: the ratio of effective sample size (ESS) to reduced

sample size after removal of siblings (S*). For a given scenario,

a positive slope indicates that ESSreduced does not decline as

fast as S* when larger fractions of siblings are removed. Note

the log scale on the y-axis. Bottom: the ratio of ESSreduced to

ESS for the full sample size (S). Values >1 indicate that remov-

ing siblings increased precision of P̂.

Fig. 6 Effects of sibling removal on the ratio of N̂e (estimated

using LDNe; Waples & Do 2008) to true Ne. Top: random

samples. Bottom: nonrandom samples. Note the log scale for

the y-axis in both panels. When sampling is random, removing

siblings upwardly biases N̂e. Purging some siblings from non-

random samples might reduce downward bias in N̂e, but

removing too many siblings can create severe upward bias.
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size of the na€ıve estimator. For almost all collections, the

Yank-2 strategy produced a higher ESS than both the na€ıve

estimator and the Yank-1 strategy. This indicates that if

there is large variance in family size, as appears to be the

case in these collections of juvenile coho salmon, informed

sibling removal can potentially improve estimates of allele

frequency. In agreement with these theoretical results,

when we applied the BLUE to simulated data for the sce-

narios in Table 2, in every case ESS based on BLUE-

weighted allele frequency was higher than ESS for the full

sample (Fig. S6, Supporting information).

When genotypes of the juvenile samples were scrambled

to mimic those of unrelated individuals, a very different

result was obtained: except in the smallest collections, in

which Colony correctly inferred everyone to be unrelated,

using the BLUE or the optimal-z strategy always reduced

ESS compared to that of the na€ıve (and in this case, cor-

rect) estimator (Fig. 7, bottom). Reductions in ESS occurred

in samples for which Colony erred by identifying spurious

relationships. Colony is much more likely to spuriously

identify HS relationships or pairs of FS than large, FS

Fig. 7 Effective sample size (ESS) for various sibling removal

and weighting strategies applied to empirical data for 70 col-

lections of juvenile coho salmon. Collections are arranged

along the x-axis in increasing order of ESS under the na€ıve sce-

nario, which equally weights all individuals. Other scenarios

either weight individuals according to the inferred pedigree

(BLUE) or remove siblings according to rules described in the

text. Top panel: the sibling reconstruction by Colony, which

identified many sibling groups in most samples, is assumed to

be correct. Bottom panel: genotypes are scrambled, mimicking

samples in which all individuals are unrelated. In all but the

na€ıve method, sibling adjustments are made based on results

from Colony, which inferred spurious siblings groups in all

samples. However, in only one collection (#61) was a family

group with three or more full-siblings inferred, so no siblings

were removed for the other collections under either the Yank-1

or Yank-2 methods, and ESS in those cases was identical to

that of the na€ıve estimator.

Fig. 8 Representative results from applying the Yank-2 sibling

removal method to simulated data. For monogamy (top panel)

and mixed mating (bottom panel) scenarios as described in

Table 2, the solid, dashed and dotted lines show (respectively)

results for probabilistic sibling removal for estimation of allele

frequency (relative RMSEP = hP), population differentiation

(relative RMSEFST = hFST ) and effective population size (N̂e/Ne).

Filled circles show results for Yank-2, and small letters (P, F,

N) indicate which data series each Yank-2 data point is related

to. The x-axis shows how much sibling removal reduces the

usable sample size (S*) compared to the full sample (S). In

general, compared to probabilistic sibling removal schemes

that produce the same overall reduction in sample size (in-

dexed by S*/S), the Yank-2 method (i) leads to greater preci-

sion in estimating P (lower hP), (ii) less precision in estimating

FST (higher hFST ) and (iii) higher estimates of effective size

(higher N̂e/Ne). For complete results for Yank-2, see Table S1

(Supporting information).
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groups from data where no family structure exists. Across

all 70 permuted coho salmon collections, Colony inferred

no FS groups of size four or greater, only one FS group of

size three and 193 pairs of FS (Table S2, Supporting infor-

mation). The Yank-1 and Yank-2 are designed so that sib-

ling groups of size < 3 do not trigger any removals, and as

a consequence, they are relatively resilient to pairs of spu-

riously inferred FS. Accordingly, even using the incorrectly

inferred pedigree, ESS for these two sibling removal strate-

gies was identical to that of the na€ıve estimator in almost

every collection; in the one exception, removing siblings

using both the Yank-1 and Yank-2 protocols slightly

reduced ESS.

Yank-2 with simulated data

Because the Yank-2 strategy appeared to perform relatively

well with the empirical coho salmon data sets, we evalu-

ated its performance with simulated data for the mono-

gamy and mixed mating models (the random mating

model produces few FS so we did not evaluate Yank-2 for

this model). Full results are shown in Table S1 (Supporting

information); representative patterns are illustrated in

Fig. 8. In comparison with probabilistic sibling removal

schemes that produce the same overall reduction in sample

size (indexed by the ratio S*/S), Yank-2 generally

increased precision of P̂ (and hence also increases ESS) but

reduced precision of F̂ST. The Yank-2 equalizes family con-

tributions to no more than two FS, so it also tends to

increase N̂e. If sampling is random (as in the scenarios

shown in Fig. 8), this leads to more upward bias in N̂e,

while for nonrandom samples, it can reduce the downward

bias in estimates of effective size.

Discussion

Allele frequency

Presence of family structure in a sample does not lead to

systematic bias in estimation of parental allele frequency,

in the sense that large numbers of siblings do not consis-

tently lead to under- or overestimation of TrueP. However,

for any given sample, the presence of siblings will tend to

skew P̂ towards frequencies of those parents responsible

for the large families, and that increases RMSE of, and

reduces precision of, P̂. The rationale for removing siblings

to estimate allele frequency is twofold: (i) reducing large

families to one or a small number of representatives pro-

duces a more balanced picture of allele frequencies in all

the parents, and (ii) siblings provide partially redundant

information about parental allele frequencies, especially

when family size is large, so removing them does not sacri-

fice much useful information.

Our simulation results provide two general insights on

this issue. First, in every combination of mating model and

sampling strategy that we evaluated, removing some or all

siblings increased the ratio of ESSreduced to S*. If all

individuals provided completely independent information

about allele frequency, this ratio should not change with

reductions in S*. Therefore, this result confirms the partial

redundancy of siblings with respect to estimation of TrueP.

The second key result is that in most of the simulated sce-

narios, this partial redundancy was not strong enough to

fully offset the loss of precision associated with reducing

overall sample size. When sibling removal had any appre-

ciable effect on performance, it always reduced precision of

P̂. In the simulations, the only exception to this pattern

was for Scenario R, which led to greatly overdispersed

variance in reproductive success among the parents. This

suggests that purging putative siblings is not a universally

sound strategy to improve estimates of TrueP; it can easily

make things worse.

The empirical example using collections of juvenile coho

salmon provides important context for interpreting results

of the simulated populations. The true pedigree of these

samples is not known, but based on the biology of the spe-

cies, the nature of the samples, and the estimated sibships

from Colony, the samples contain a great deal of family

structure. We showed that, under the assumption that the

inferred pedigree is correct, noninteger weighting of indi-

viduals using the BLUE approach produces an estimate of

parental allele frequency with lower variance than the

na€ıve estimate or any method that removes entire individ-

uals. On the other hand, our results also show that perfor-

mance of the BLUE method can be worse than the na€ıve

estimator when the inferred pedigree is not correct.

Although it might be tempting to apply the BLUE or try to

find the optimal removal scheme given the inferred pedi-

gree of sample members, there are clear risks associated

with that approach.

Two variations of sibling removal (Yank-1 and Yank-2)

that have been used in some empirical studies performed

well in analysis of the coho salmon samples: in most cases,

they produced a higher ESS than the na€ıve estimator when

the inferred pedigree was assumed to be correct, and in all

collections but one they did not degrade the performance

of the allele frequency estimate when the pedigree

included spurious family structure. The Yank-2 procedure

consistently had a higher effective sample size than Yank-

1, suggesting that it might be a generally better option.

This empirical coho salmon example provides a somewhat

more optimistic picture of the effectiveness of sibling

removal for estimating allele frequency than did the simu-

lations. We verified this general pattern by incorporating

the Yank-2 procedure into the simulated data (Fig. 8,

Table S1, Supporting information). We expect this result

can be explained by two factors. First, the Yank-1 and

Yank-2 methods only reduce families having three or more

FS, whereas one of a pair of siblings could be removed

during proportional sibling removal in the simulations.

Second, in many of the coho salmon samples, Colony

inferred not only some large FS families but also many

unrelated individuals (see Table S2, Supporting informa-

tion)—a feature that also characterized the one scenario in

the simulations (Scenario R) for which aggressive purging
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of siblings did substantially reduce RMSEP. Therefore,

results for the empirical example support the premise from

the simulations that removal of putative siblings is most

likely to improve allele frequency estimation when the

samples include a substantial degree of family structure

and a large variance in family size. If every family is large,

there will be little to gain by downsampling some of them.

In the simulations, sibling removal degraded performance

most in scenarios (e.g. A, B, S, U; Figs 3 and 4) where sam-

ple size was large compared to Ne, which tends to produce

many large families. However, if there are only a few large

families and many unrelated individuals, then the relative

contribution of the large families to the estimated allele fre-

quency can be brought into line by downsampling them

(as in Scenario R). Plotting the distribution of inferred fam-

ily sizes in empirical samples (see, for example, Whiteley

et al. 2015) can be useful to researchers in this regard.

A caveat worth noting regarding the empirical example

is that only one type of sibling misidentification was mod-

elled (spurious identification of related individuals when

all individuals are unrelated). The Yank-1 and Yank-2

approaches, although they are immune to spuriously

inferred HS and FS groups larger than 3, could perform

worse if FS groups larger than 3 were inferred. Given the

genotype data that we had (95 SNPs), Colony almost never

identifies such large sibling groups among totally unrelated

individuals; however, it is possible that it could spuriously

identify large FS groups among samples with many HS, or

if fewer loci are used in the analysis. Thus, practitioners

should be aware that our results do not provide informa-

tion about how the Yank-1 and Yank-2 methods might per-

form in their own data sets when large family groups are

inferred by unreliable pedigree reconstruction methods.

These should be treated on a case-by-case basis. Tools for

evaluating expected performance of sibling removal meth-

ods are available at https://github.com/eriqande/afblue.

Population differentiation

Our results for FST estimation largely paralleled those for

allele frequency, which suggests that they might be gener-

ally applicable to other types of analyses that strongly

depend on population allele frequencies, such as assign-

ment tests and genetic mixture analysis—but that is only a

conjecture that requires empirical evaluation. We did find

that a wider range of scenarios showed improved perfor-

mance of F̂ST under partial removal of siblings (see Figs 3

and 4). We suspect this is because removing siblings

reduces the upward bias in F̂ST that occurs when family

structure inflates the variance of P̂. Although family struc-

ture does not bias P̂ for a single population, F̂ST is propor-

tional to the variance of P̂ across populations, and that is

affected by relatedness within samples.

Because using the BLUE increases precision of P̂ when

the inferred pedigree is correct, it seems likely that it also

should improve performance of F̂ST under those condi-

tions. However, our results also suggest that using BLUE

could also degrade performance of F̂ST when the pedigree

is not reliable. Furthermore, different estimators of FST and

related quantities have different sensitivities to effects of

rare alleles, the number of populations exchanging genes

and corrections for sampling error (Bhatia et al. 2013).

Finally, in our simulations, the Yank-2 method generally

reduced precision in F̂ST, even though it generally

increased effective sample size and precision in P̂. There-

fore, more empirical evaluations are needed before any

general conclusions can be drawn about optimal ways of

dealing with siblings to estimate measures of genetic differ-

entiation.

Effective population size

Presence of siblings affects estimation of Ne differently (in

two ways) than it does estimation of allele frequency. First,

whereas family structure only affects precision of P̂, it can

severely bias estimates of Ne. Second, whether samples are

collected randomly or not has a much larger effect on N̂e

than P̂. For the LD and sibship methods, family structure

that occurs naturally in all finite populations is part of the

signal that allows one to estimate effective size. Nonran-

dom sampling that tends to collect groups of siblings

together creates additional family structure that is mistaken

for drift, which downwardly biases N̂e. In theory, an unbi-

ased sample could be reconstructed by removing siblings

collected in excess of the random expectation (Fig. 6). In

practice, however, this will be difficult or impossible to

accomplish. It is clear even from our limited evaluations

that no generic, one-size-fits-all strategy of fractional sib-

ling removal will be effective in every scenario. The loca-

tion of the sweet spot of sibling removal that produces a

completely unbiased estimate varies widely, depending on

(at least) the mating system, type of sampling, values of S

and Ne and whether all siblings or only FS are removed.

Furthermore, the Goldilocks zone (an area around the

sweet spot that represents ‘just the right amount’ of bias

adjustment to produce a reasonable estimate) can be very

narrow, such that the consequences of small errors in iden-

tifying the optimal fraction of siblings to remove can be

harsh. For example, under Scenario W, an unbiased esti-

mate can be achieved by removing about 95% of all sib-

lings, but removing only 75% leaves N̂e downwardly

biased by 70%, while removing all siblings produces an

estimate that is over five times as large as true Ne (Fig. 6).

Researchers interested in pursuing this option are faced

with a chicken-and-egg conundrum: only if one knows the

true effective population size can one determine the precise

amount of sibling reduction that will produce an unbiased

estimate of Ne.

We used the LD method to estimate Ne, but similar

results can be expected for Wang’s (2009) sibship method

and for ONeSAMP (Tallmon et al. 2008); the latter’s

approximate-Bayesian-computation program uses several

summary statistics, but the most important signal is from

LD. In the standard temporal method for estimating Ne,

temporal F is a function of the variance of P̂ in the two

time periods (Nei & Tajima 1981; Waples 1989); therefore,
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anything that affects precision of P̂ can affect both bias and

precision of F̂, just as it can for F̂ST. This topic merits some

empirical evaluation as well.

Random and nonrandom sampling

We see no realistic way to distinguish random and nonran-

dom samples based on patterns of relatedness, even if fam-

ily structure can be reconstructed with 100% accuracy. For

any given array of sibling relationships that can be gener-

ated with nonrandom sampling, it is possible to imagine a

random sample that could produce the same result. For

example, consider Scenario R, in which most of the N

potential parents produced no offspring that appeared in

the samples, while one or a few lucky pairs produced large

numbers of offspring. This is exactly the kind of result that

could arise if offspring of a species with Type III survival

are sampled at an early age before they have properly

mixed (as could easily occur with many fish, marine inver-

tebrates, amphibians, insects, etc.). On the other hand, this

pattern of family structure (realized Ne was <2% of N for

Scenario R; Table 2) also conforms to predictions of Hedge-

cock’s (1994) hypothesis of sweepstakes reproductive suc-

cess (reviewed by Hedgecock & Pudovkin 2011), which has

been postulated to be responsible for a number of tiny esti-

mates of the Ne/N ratio in marine species (Hedrick 2005;

Hauser & Carvalho 2008; Waples 2016). A sample with this

type of family structure could therefore represent an

extreme case of nonrandom sampling, or an extreme case

of naturally overdispersed variance in reproductive success

that characterizes a novel and important evolutionary phe-

nomenon. Without independent information about the nat-

ure of the samples, it generally will not be possible to

distinguish between these two possibilities.

Conclusions and future directions

Identifying optimal ways for dealing with siblings in popu-

lation genetic data sets is a complex problem with no sin-

gle, one-size-fits-all solution. Our evaluations of simulated

and empirical data sets by no means represent a compre-

hensive evaluation of this topic, nor was that our intent.

Nevertheless, several important points can be made.

1 The paradigm that seems to be emerging in applied con-

servation genetics is that family structure in genetic data

sets is an aberration that has to be cured by removing

putative siblings. We think it is dangerous to adopt this

as a general perspective, even though it might be gener-

ally effective in some specific applications, such as Baye-

sian clustering, and can be conditionally effective in

some other applications, such as estimation of allele fre-

quency. However, even our limited evaluations demon-

strate that the consequences of adjusting for putative

siblings can depend on the nature of the downstream

analyses, the method for adjusting for siblings, the relia-

bility of the inferred pedigree, and the magnitude and

distribution of family structure in the sample, among

many other potentially contributing factors. Until suffi-

cient empirical evaluations have been conducted that clo-

sely model these factors in a way that is relevant for a

specific intended application, it would be prudent for

researchers to take some guidance from the Hippocratic

Oath: ‘first, do no harm’. That is, the first objective

should be to ensure that any data manipulations to

account for putative siblings do not make problems asso-

ciated with family structure worse. Our results indicate

that is a likely consequence of indiscriminate purging of

putative siblings.

2 Removing putative siblings, or downweighting them

using an approach like BLUE, is not a panacea for deal-

ing with problems arising from nonrandom sampling.

Even if sibship reconstruction is 100% accurate and an

optimal adjustment for allele frequency can be made, the

result will still be lower precision than could have been

obtained with a random sample. And for analyses such

as Ne estimation that can be biased by excess family

structure in nonrandom samples, it will be difficult or

impossible to determine the optimal fraction of siblings

to remove. Therefore, if one strongly suspects they have

nonrandom, family-correlated samples, a far better strat-

egy is to go back and obtain a random sample. Of

course, that is easier said than done in many natural

populations.

3 The simulation results were rather pessimistic regarding

removal of putative siblings, except with very strong

family structure. Nevertheless, those results are opti-

mistic because they all assumed that every true FS and

HS could be correctly identified, and that no unrelated

pairs were mistakenly identified as siblings. Although

that level of precision might be approached under some

ideal conditions, in general there will be uncertainties

associated with many sibling assignments. The empirical

example using samples of coho salmon demonstrated

that errors in pedigree reconstruction can degrade per-

formance of sibling adjustments. Therefore, a rigorous

assessment of performance of sibling adjustment meth-

ods must include realistic assumptions about the reliabil-

ity of sibling reconstruction.

4 Considerably more empirical and theoretical evaluations

are needed of this complex problem. Other mating and

sampling systems could be modelled, using a wider

range of parameter values, and a wider range of down-

stream analyses could be evaluated. We ignored compli-

cations such as age structure and migration, which are

important for many natural systems. The following ques-

tions seem relevant: Can classes of analytical methods be

identified that respond in predictable ways? If different

analyses show different sensitivities to family structure,

then a likely consequence would be that different meth-

ods use different subsets of the original data. How can

these differences be accommodated in trying to integrate

results to draw population-level inferences about key

evolutionary and ecological processes?

5 Finally, our analyses related to allele frequency assumed

that the goal is to estimate parental allele frequency,
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defined to be P in the entire population of N potential

parents. But what if instead one wants to estimate P in

the same generation that is sampled? Or what if one

wants to estimate the P that characterizes the effective

population that actually produces the next generation?

In the latter case, the best strategy would be to take a

large, random sample of progeny and weight all individ-

uals equally, regardless of family structure. So different

perspectives about what quantity we want to estimate

can lead to different conclusions regarding handling of

siblings. Researchers should give this some thought

before considering various sibling adjustment options.
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available at https://github.com/eriqande/afblue, which

includes code and data to replicate all reported results. R

code for the simulations and related analyses is also avail-

able at this site. Full-sibling families inferred by Colony for

the coho salmon collections are listed in Table S2 (Support-

ing information).
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